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The Outline of This Talk*

 Defining the challenge of computing incompressible
shear flows with compressible codes.
 Renewed focus from ILES studies of turbulence

 A shear test problem and its incompressible solution
 Problems: real and imagined

 Real - an ill-conditioned system, violations of the
2nd law or lack of convergence in Mach number

 Imagined - incompressibility as an approximation
and its limitations

*The same line of investigation as Ben Thornber’s 
talk earlier this afternoon.



March 2007 

F.F. Grinstein, L.G. Margolin, W.J. Rider (Eds.)

ImplicitImplicit    Large EddyLarge Eddy
Simulation:Simulation:
Computing TurbulentComputing Turbulent
Flow DynamicsFlow Dynamics

Recently there has been a renewed
interest in solving incompressible
flows with compressible method
often in the context of turbulence.

A synthesis of ILES research is
found in a book with contributions
from key ILES researchers.Available soon!

Summer 2007
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We have had excellent results using
compressible methods for turbulence.

 Success in modeling the JHU wind tunnel
experiment has been achieved.

 The experimental data was published in JFM (480,
pp. 129-160, 2003) and can be found on a JHU
website.

 A difficult decaying turbulence experiment, with lots
of data for validation at Reλ=720.
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Great results were computed considing this a low-
Mach number flow (M=0.1, not incompressible)

 The kinetic energy decays were spot on with both
PLM and PPM methods (not minmod PLM!).
 The method passes an important validation hurtle
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The PDF of the velocity increments are
much more impressive (on a coarse grid).

All the ILES methods produce
much more intermitent results
than the CLES.   The xPPM
and MPDATA results are the
closest to the data.

128x128, LES w/dynamic-mixed

64x64

Kang et al
JFM, 480,
2003.

64x64
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ILES - 1283

Evolution of the Taylor-Green Vortex
MILES: Grinstein, Fureby, Drikakis, Youngs, 2006 (JoT, in press);  DNS, Brachet et al. ‘83, ‘91

LES - 1283

! = "dK / dt* = # / Reeff  ?
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Power law decay of the mean kinetic energy
• ~  t–1.2 behavior just after t*~9, generally accepted as characteristic of decaying turbulence
• ~ t–2 behavior, asymptotically, reflecting that eddies larger that box side length cannot exist
•    LR is significantly less dissipative, ….

Evolution of the Taylor-Green Vortex
MILES: Grinstein, Fureby, Drikakis, Youngs, 2006, JoT in press.
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Why do Youngs’ results stand out?

 Is there something intrinsically “better” with
Youngs’ TURMOIL code?
 Is it the Lagrange-Remap, 3rd order advection?

 Youngs has hypothesized that one reason is the
form used for artificial viscosity in the Lagrangian
step
 The artificial viscosity is proportional to the

multidimensional divergence of velocity squared

 This form of viscosity is less favorable for shocks
 Edge viscosity would not share this property, but

would perform better in shocks

 
Q = C ! x( )

2

max 0,!" #u( )
2
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Youngs has suggested abstracting this to a
simpler problem, like a 2-D shear layer.

 David Youngs of AWE developed a simple problem to
examine the differences in code performance on shear.

 The problem is an ideal, but discontinuous shear with a
potential flow perturbation in a low frequency mode
 The problem exhibits different structures with varying

Mach number

 I have decided to use a somewhat different problem.
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 His code showed little dependence on Mach or CFL
number,

 But a Godunov Method (VH-1 L-R PPM) showed great
dependence on both!

Youngs studied a simple shear problem
and found serious problems.

16x16 grids,
Under refinement
the morphology 
of the shear layer
changes as a 
function of Mach 
number



March 2007 

An doubly periodic shear layer as a useful
test problem (usually incompressible).

32x32 64x64 128x128

 v = 0.05Sin(2! x)
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Kinetic energy decay converges at 2nd
order under mesh refinement.

The calculation is
converging
toward the
incompressible
analytical result
of kinetic energy
conservation with
a rate of 1.94
(2nd order).
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2nd Runge-Kutta plus 4th order centered
edge values with monotone limiting*

 We see 2nd order convergence in KE with mesh ref.
 We see divergence as the Mach number decreases.
 Converging to a finite dissipation result.

*Results that most clearly relate to Thornber’s results
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We examine compressible results with a
couple of different Godunov methods.

θ=1/2θ=−1/2

wj

wj+1/2=wj+1/2sj

wj-1/2=wj-1/2sj

PLM

θ=1/2θ=−1/2

wj

wj+1/2

wj-1/2

PPM

Defined by the slope and 
cell-average, produces a 
inherently “broken space” 
approximation.

Defined by the edge values 
and cell-average, produces a 
potentially continuous 
approximation with centered 
edge values.
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Performance for simple Godunov
methods - PLM* w/high order or minmod.

This is a convergent compressible 
sequence, converging at rate of 0.972, 
but it is more diffuse at 128x128 than 
the incompressible 32x32 calculation!
Converges to the “same” finite 
dissipation result as R-K.

Note that all the compressible
curves turn up at late time and
The 128x128 is more dissipative
than the 64x64

*A dimensionally split integrator
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The PPM* method performs a bit better
than PLM, but its not sufficient.

When I refine
one more level
problems arise
with the
convergence.

*A dimensionally split integrator
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Using different edge value differencing,
shows some interesting sensitivity.

32x32 grid

All calculations
on a 32x32 grid,
and the
structure near
the end each
calculation is
related to the
presence of
nonlinear
acoustic waves
(shocklets).
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Yet another advantage of PPM:
Asymptotically preserving solutions

 If one looks at solutions where the is an asymptotic
structure, the truncation error can inhibit convergence,
unless the small scale structure is resolved.  PLM does
this!
 PPM: Continuous edge values as

 Example - Reaction system with a diffusive limit

 Example 2 - Acoustics in the zero(low)-Mach limit
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Vorticity shows that determining the “best”
solution is unclear.

Incompressible

PLM minmod
M=0.025 PLM M=0.025 PLM M=0.2

PPM M=0.2PPM M=0.025 Incompressible

32x32

PLM M=0.2 PPM M=0.2

PLM minmod
M=0.2

128x128
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Material motion results show that the “better”
schemes to be worse!

Incompressible

PLM minmod
M=0.025

PLM M=0.025 PLM M=0.2

PPM M=0.2PPM M=0.025 Incompressible

32x32

PLM M=0.2 PPM M=0.2

PLM minmod
M=0.2

128x128
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From these results we can draw some
preliminary conclusions.

 PPM generally is less diffusive (of K.E.) than PLM,
and centered edge-based approximations are
(almost) physically and diffusively acceptable.

 The minmod PLM method is convergent, but is very
diffusive, but appears better for material advection.
 Results are relatively insensitive to Mach number.

 Less diffusive PLM methods behave unphysically
late in time (t>1).

 The R-K (MOL) integrator with centered edge values
is mesh convergent, but too diffusive as the Mach
number descreases.
 Upwind edges behave unphysically.
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The methods misbehave because
div(u)=0 looks like a shock.

 Div(u)=0 produces semi-
permanent shock/rarefaction
pairs cell-by-cell
 Is shock dissipation

appropriate?
 Schemes can produce meta-

stable states that produce anti-
diffusion without a shock then
“healing” the unphysical state.
 Small CFL numbers make the

problem worse!

Looks like a shock in x

and a rarefaction in y

Minmod

Less
diffusive
slopes
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Examining the evolution of entropy
yields some disturbing results.

TdS ! 0
2nd law of 
thermo sign 
convention

Any quality assessment that counts the “swirls” would
Favor such violations since it will make the flow swirlier
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Violations of the 2nd law of thermodynamics
are more serious than other problems.

 The violations of the 2nd law of thermodynamics is
more critical than too much dissipation.

 This implies that results are unphysical rather than
simply inaccurate.

 The reason for this violation seem to be directly
linked to the spatial differencing.

 The problem with violations of an “entropy
condition” slowly gets worse as the Mach number
decreases,
 Points to a problem with the conditioning of the

problem.
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Why are there violation of the 2nd law?

 The problem is clearly associated with the “entropy”
wave (but not shear!) carrying the density & energy
changes.

 Effectively the low Mach number flow is poorly
conditioned,

 The condition number is the ratio of largest to smallest
eigenvalues,
 The condition number can become infinite if u

becomes small (as the Mach number decreases).
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If incompressible flows are ill-conditioned
what can be done?

 Past efforts have focused on preconditioning the
system, thus basically removing some of the
compressible character of the solutions in order to
produce incompressible solutions (not practical).

 Another common approach is when problems are
found dissipate them!

 The minmod limiter does this naturally, but its
overkill, it dissipates the entire flow.

 The trick is to detect the problems and deal with
them locally where the problem occurs.
 Careful examination found that all the problems

occur in the entropy modes in compressible flow,
!S =

!"

"
#
! p
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Is incompressibility entirely physical?

 No, its not.  Certainly not inviscid incompressibility.
 For starters incompressibility has infinite signal

speeds, fluids do not, finite speed of propagation is
necessary.
 There is no second law, and vanishing viscosity is

not generally an applied principle..
 …except for the derivation of Margolin, Rider &

Grinstein JOT 2006.  The finite scale equations
have solutions based on vanishing viscosity.

 Incompressibility does not have known mechanisms
for producing singularities, but they are necessary
to explain the fundamental behavior of turbulence.

 Compressible flows produce singularities, i.e.
shocks under almost any conditions.
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The production of dissipation without
viscosity is essential for many processes.

 For shock waves in the limit of weak shocks

 For three dimensional turbulence

 For Burgers’ equation, comes from the jump
conditions

 The weak shock limit and the zero Mach number limit
are one and the same!  What is the difference?
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The difference between the low Mach
number limit and weak shock is subtle.

 The difference comes down to the implied
smoothness of the flow.

 A weak shock limit has an implied discontinuity, a
shock (differs from adiabatic at 3rd order),

 …while the incompressible flow is a well-
conditioned nice flow.

 What really happens? Under what conditions do
physical (inviscid) flows fail to shock?

 Do incompressible flows deplete the nonlinear
mechanism for shock formation?
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Compressible flows can shock at any Mach number!
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Evidence shows that incompressible flows
steepen and produce shock-like structures.

 By shock-like this means that the flow structures
achieve a thickness that is linearly dependent on
resolution (3 zones wide regardless of mesh density)

 This occurs quite clearly in the shear layer problem
(and many others!)

3 cells 6 cells 12 cells
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Summary

 Low-Mach number shear flows are a distinct
challenge for compressible solvers

 Various methods perform well with issues for low-
Mach shear (more diffusive limiters have advantages)
 Dimensionally split solvers are not too diffusive,

but can show 2nd law of thermo violations
 MOL+centered differencing is convergent in mesh

refinement, but not Mach number
 These errors can be viewed as arising from the ill-

conditioning of the system of equations.
 Incompressibility as an appropriate model should be

examined critically.


